ROLE OF THE MICROVASCULATURE WITH FOCUS ON

ANOCA AND MINOCA

Timothy Henry, MD

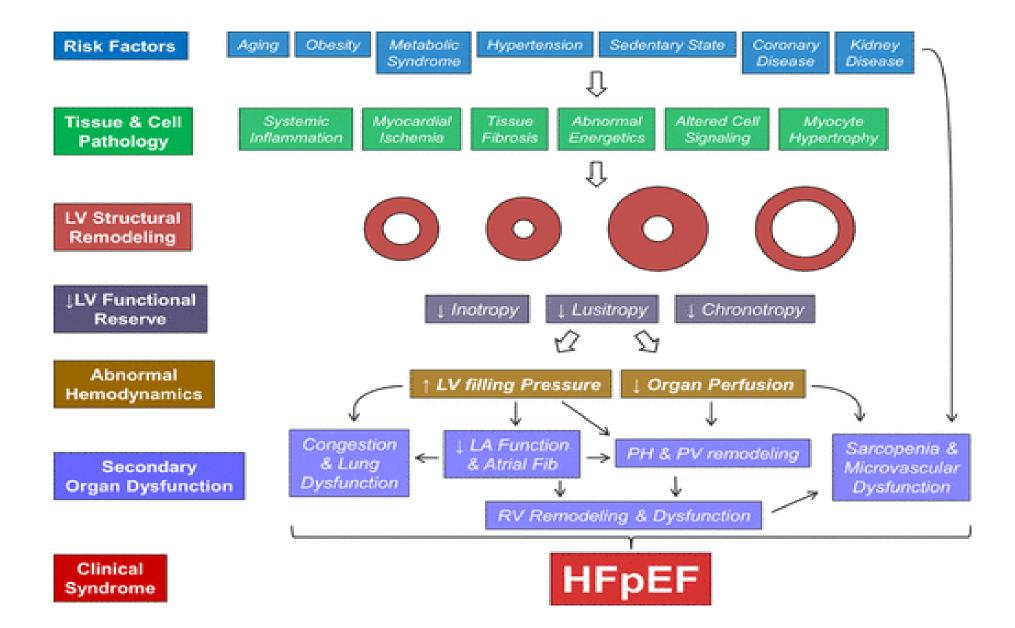
Medical Director, The Carl and Edyth Lindner Center for Research and Education The Carl and Edyth Lindner Family Distinguished Chair in Clinical Research Director of Programmatic and Network Development

Coronary Microvascular System: What you don't see on an Angiogram

Stereo-arteriogram **Coronary angiogram** Imaging resolution 30 µm 300 µm + William Fulton, MD thesis,

William Fulton, MD thesis, University of Glasgow, 1963

Coronary Microvascular Dysfunction and Vasomotor Diseases

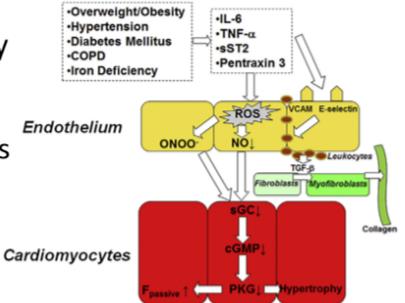


Smilowitz NR, Toleva O et al. Circ Cardiovasc Interv. 2023;16:e012568.

CRF

Microvasculature Plays a Key Role

 Microvascular Dysfunction Heart Failure with Preserved EF STEMI/NSTEMI Post-PCI angina Post-CTO angina Refractory angina



Marc A. Pfeffer. Circulation Research. Heart Failure With Preserved Ejection Fraction In Perspective, Volume: 124, Issue: 11, Pages: 1598-1617, DOI: (10.1161/CIRCRESAHA.119.313572)

© 2019 American Heart Association, Inc.

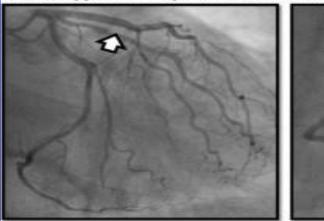
Background

- No treatment yet shown to reduce morbidity and mortality in HFpEF¹
- Coronary microvascular dysfunction (CMD) proposed as a novel mechanism in HFpEF²⁻⁵
- Clinical evidence of CMD in HFpEF limited to selected referral samples⁶⁻¹⁰

¹Eur Heart J 2016;37:2129, ²J Am Coll Cardiol 2013;62:263, ³JACC Heart Fail 2016;4:312, ⁴Heart 2016;102:257, ³Eur Heart J 2018 doi: 10.1093/eurheartj/ehy301, **ESC Congress** ⁶Microcirculation 2015;22:528, ⁷Eur Heart J 2018;39:840, ⁸Am J Physiol Heart Circ Physiol 2018;314:H1033, ⁹JAHA 2016;5.pii: e002649, ¹⁰Circ HF 2016;9.pii: e002562 **Munich 2018**

PROMIS-HFpEF: Conclusions

- Largest prospective multicenter study of CMD in HFpEF
- High (75%) prevalence of CMD in HFpEF in the absence of unrevascularized macrovascular CAD
- CMD is associated with HF severity (个NT-proBNP), systemic endothelial dysfunction (↓ EndoPAT RHI, 个UACR), and cardiac dysfunction (↓LV, LA, RV strain)
- Microvascular dysfunction may be a promising composite risk marker and therapeutic target in HFpEF

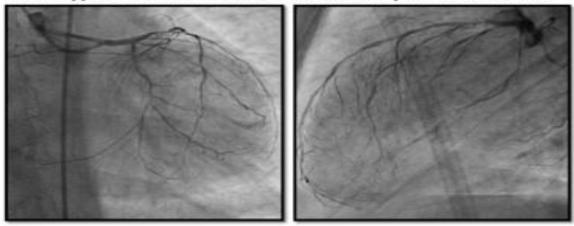

ESC Congress

Refractory Angina

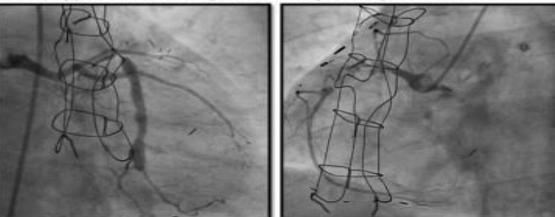
- Increasing number of patients as CAD mortality decreases and population ages
- 10-12 million patients in the US with chronic angina
- 10-15% of patients undergoing coronary angiography have myocardial ischemia with anatomy not ideal for CABG/PCI
- Chronic total occlusion, degenerated SVG, diffuse disease, poor distal targets, comorbidities and angina
- Angina in the COURAGE trial at 1 year: 42% for medical treatment vs. 34% for PCI (p<0.001)

Refractory Angina Classification Scheme

Phenotype A. Suspected Cardiac Syndrome X



Phenotype B. Limited Territory at Risk



Henry and Jolicoeur, Nature Reviews Cardiology 2014;11:78

Phenotype C. Diffuse Thread-Like Coronary Atherosclerosis

Phenotype D. End-Stage Coronary Artery Disease

INOCA: insights from the ISCHEMIA Trial

Moderate or severe ischemia


Core lab-verified

Exclusion of prior PCI, CABG, uninterpretable CCTA or no CCTA

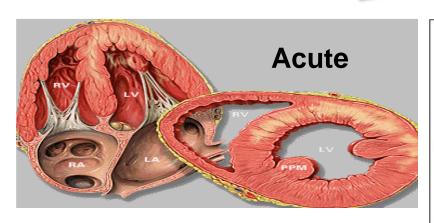
8,518 ISCHEMIA Enrolled Participants

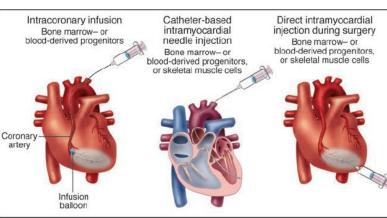

13% INOCA

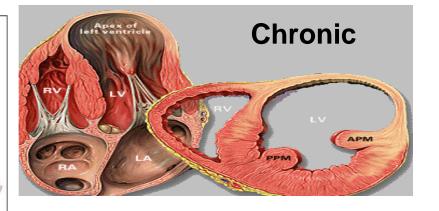
Ischemia severity not associated with extent of nonobstructive CAD on CCTA **INOCA** associated with:

• Female sex

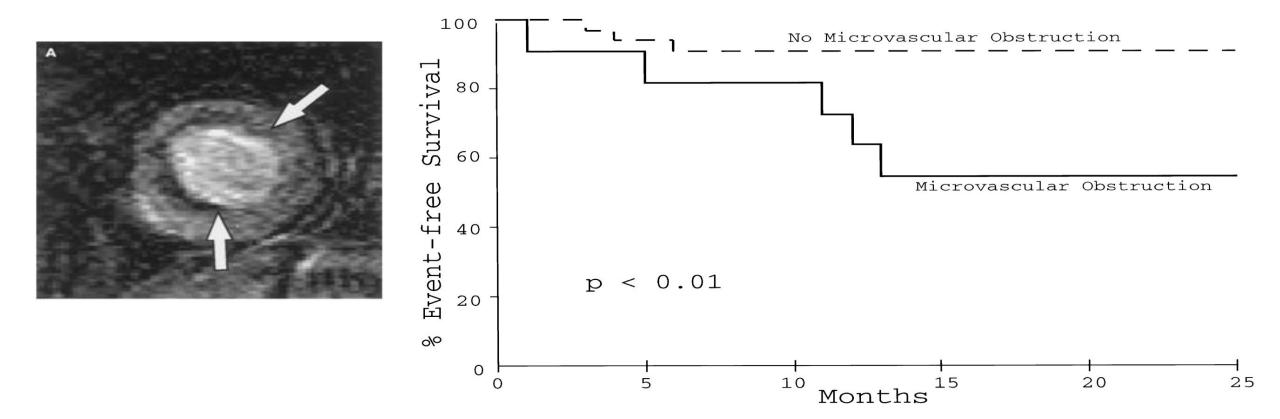
- Younger age
- Relatively less severe ischemia

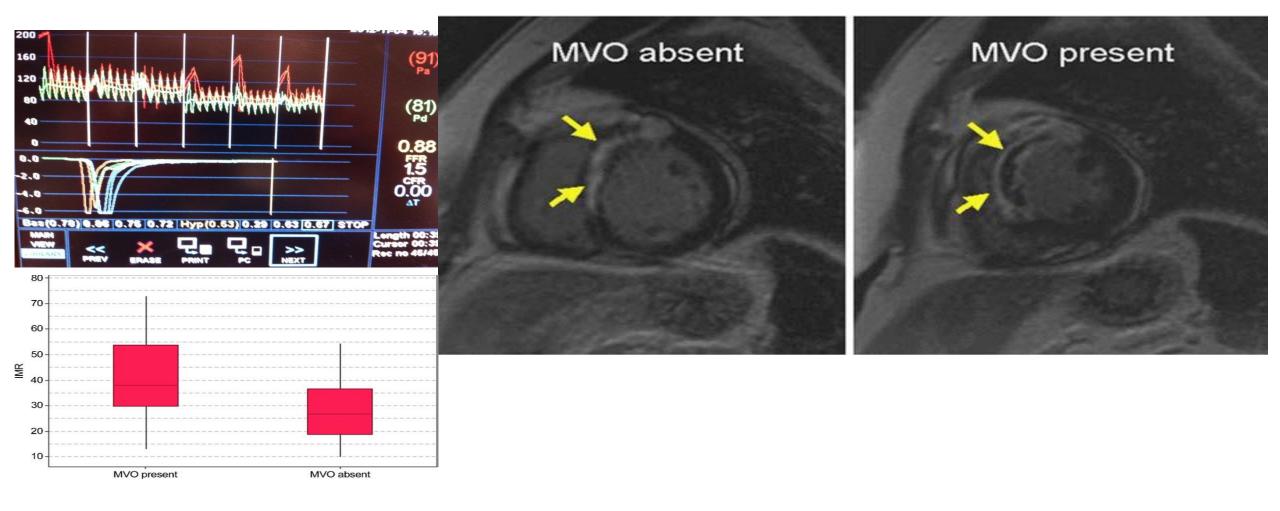

Women >4-fold odds of INOCA vs men on multivariate analysis



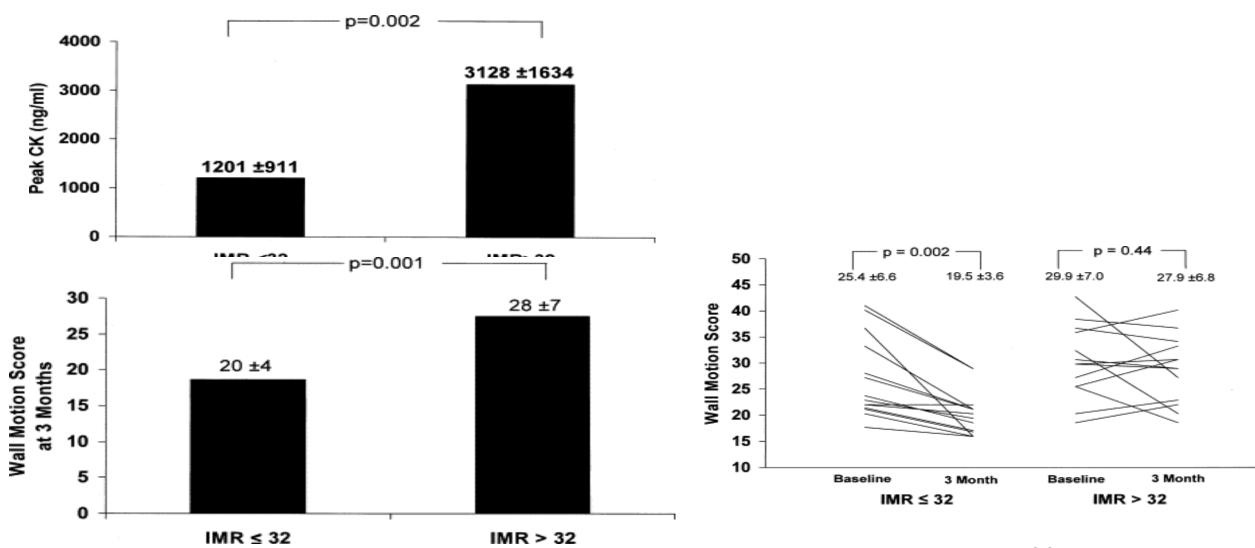

Reynolds HR et al. JACC Cardiovascular Imaging. 2023;16(1):63-74

STEMI/NSTEMI

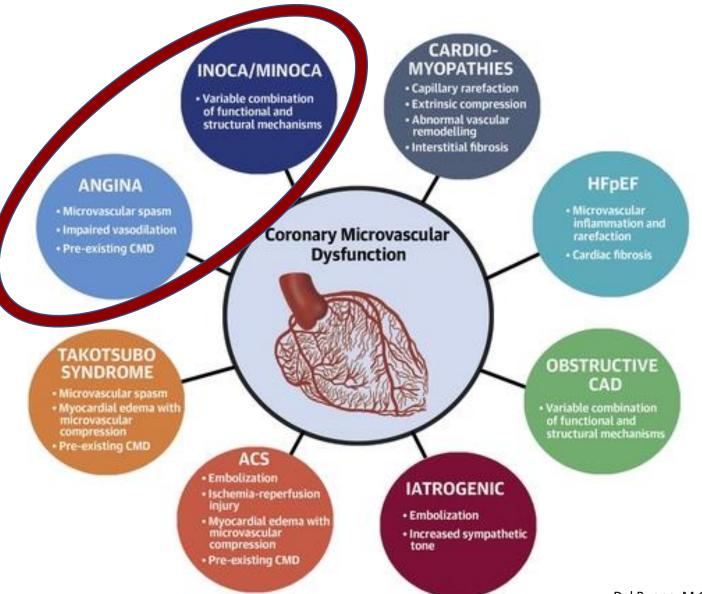

- Identification of high risk patients
- Selection for novel early treatments ?



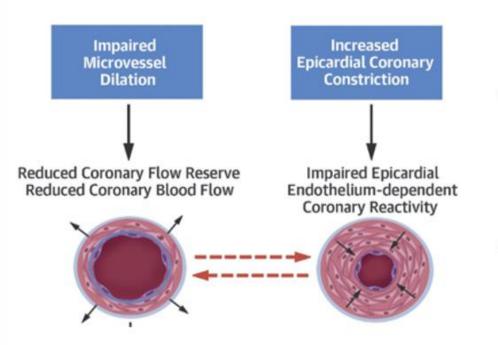
MVO and Risk


Wu K C et al. Circulation. 1998;97:765-772

IMR correlates to presence of MVO


McGeoch et al. JACC: CARDIOVASCULARINTERVENTIONS, VOL.3, NO.7, 2010: 715-22

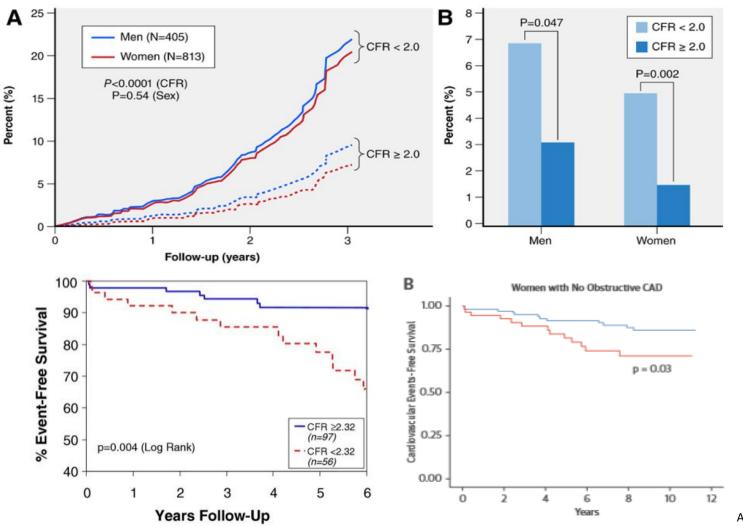
Infarct size, recovery and IMR


Fearon et al. JACC 51, 5, 2008, 560 - 565

Coronary Microvascular Dysfunction Across CVD

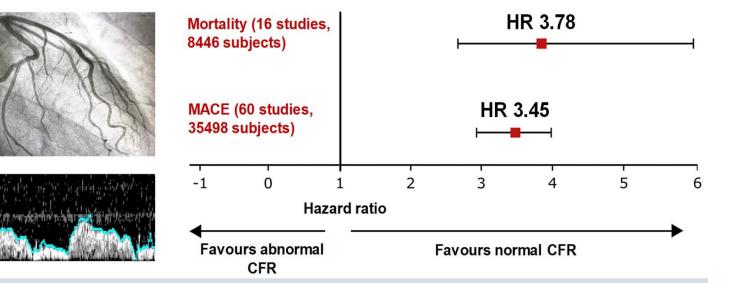
Del Buono, M.G et al. J Am Coll Cardiol. 2021;78(13):1352-1371

INOCA (ISCHEMIA & NON-OBSTRUCTIVE CORONARY ARTERY DISEASE) & CORONARY MICROVASCULAR DYSFUNCTION (CMD)



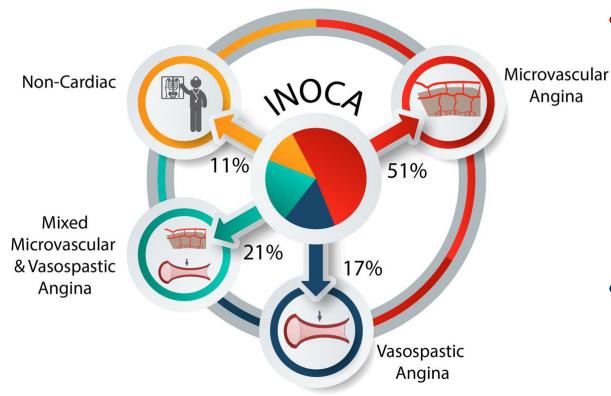
- INOCA is increasingly recognized
 - Estimated prevalence of 3 to 4 million
 - Women make up about 70% of INOCA population in the US
- CMD is present in ~50% INOCA

Long-term Outcomes in INOCA

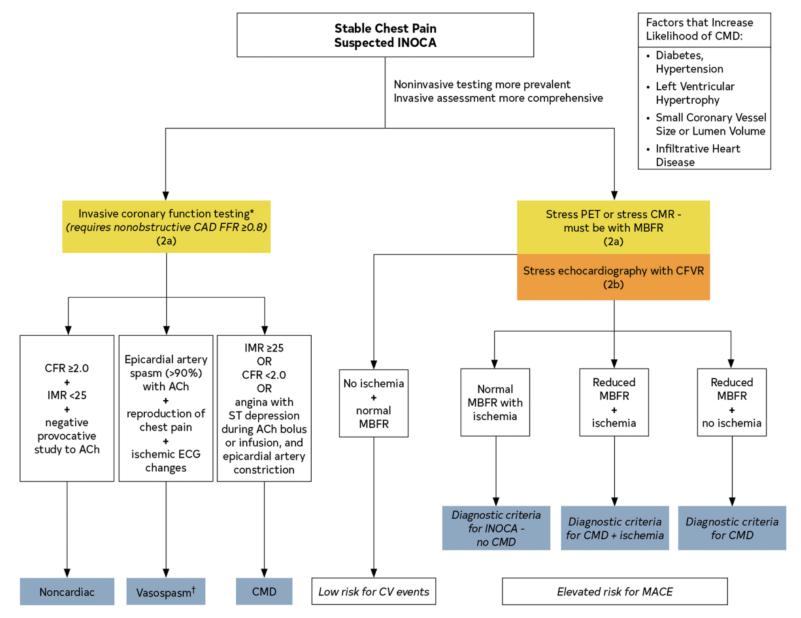

Non-endothelial Dependent CMD predicts MACE

Murthy VL, et al. Circulation. 2014 Jun 17;129(24):2518-27 Pepine C, et al. J Am Coll Cardiol. 2010 Jun 22;55(25):2825-32. AlBadri A, et al. J Am Coll Cardiol. 2019 Feb 19;73(6):684-693.

CFR Predicts MACE and Mortality


Normal coronary flow reserve (CFR) is strongly associated with a reduced risk of death and major cardiovascular events (MACE)

A systematic review and meta-analysis of 79 studies and 59740 individuals across multiple modalities of CFR measurement.


- 1 in 4 patients with abnormal CFR will die in 3 years
- CFR was predictive not only in patient with acute and chronic coronary syndromes but in diseases like HF, AS, systemic sclerosis
- CFR was predictive of outcomes across all modalities (invasive, PET, TTE)
- IMR was prognostic only in transplant patients
- CFR as a tool to risk stratify patients

Coronary Vasomotor Disorders International Study (COVADIS) INOCA Endotypes

- Microvascular Angina (MVA):
 - Non-endothelial dependent CMD
 - \downarrow Vasorelaxation
 - Endothelial Dependent Dysfunction
 - \uparrow Vasoconstriction
 - Microvascular spasm
- Vasospastic angina (VSA)
 - Vascular smooth muscle hyperactivity

2021 ACC/AHA Chest Pain Guidelines - INOCA

Gulati M., et al. Circulation. 2021 Nov 30;144(22):e368-e454.

2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes

Investigations in patients with <u>suspected coronary micro-</u> vascular angina

Recommendations	Class ^a	Level ^b	
Guidewire-based CFR and/or microcirculatory resistance measurements should be consid- ered in patients with persistent symptoms, but coronary arteries that are either angiographi- cally normal or have moderate stenoses with preserved iwFR/FFR. ^{412,413}	lla	В	
Intracoronary acetylcholine with ECG moni- toring may be considered during angiography, if coronary arteries are either angiographically normal or have moderate stenoses with pre- served iwFR/FFR, to assess microvascular vasospasm. ^{412,438–440}	ШЬ	B	2019

2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes

Recommendations for investigations in patients with suspected vasospastic angina

Recommendations	Class ^a	Level ^b	
An ECG is recommended during angina if possible.	1.1	С	
Invasive angiography or coronary CTA is rec- ommended in patients with characteristic epi- sodic resting angina and ST-segment changes, which resolve with nitrates and/or calcium antagonists, to determine the extent of under- lying coronary disease.	I	С	
Ambulatory ST-segment monitoring should be considered to identify ST-segment deviation in the absence of increased heart rate.	lla	С	
An intracoronary provocation test should be considered to identify coronary spasm in patients with normal findings or non-obstruc- tive lesions on coronary arteriography and a clinical picture of coronary spasm, to diagnose the site and mode of spasm. ^{412,414,438–440}	lla	в	© ESC 2019

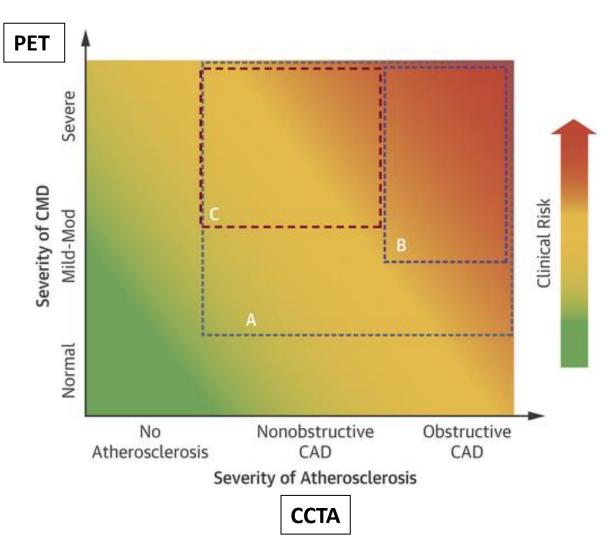
Stress Tests Predict Obstructive CAD NOT INOCA

Predicting Obstructive CAD				
Test	Sensitivity, %	Specificity, %		
Exercise echocardiogram	88	72		
Dobutamine echocardiogram	97	65		
Exercise/Vasodilator SPECT	98*	13†		
Vasodilator PET	96‡	34§		
Exercise ECG	53 to 69	69 to 74		

After correction for referral bias: *67%, †75%, ‡82%, §73%.

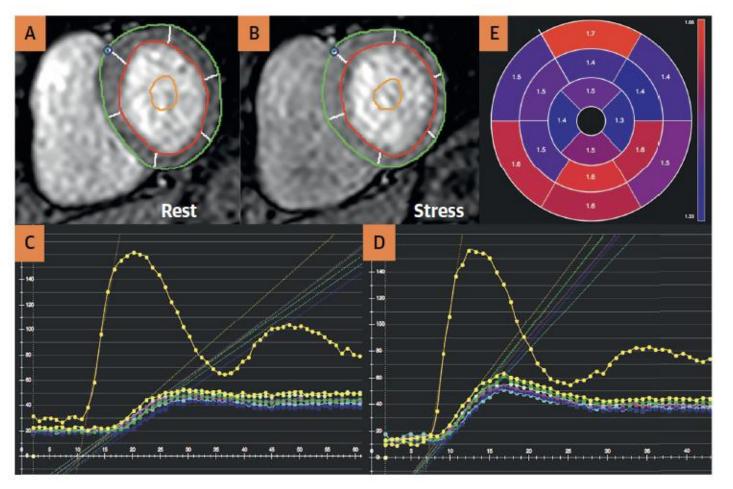
Predicting Non-Endothelium Dependent CMD						
Test	n	% (+)	Sensitivity, % (95% Cl)	Specificity, % (95% Cl)	NPV, % (95% CI)	PPV, % (95% Cl)
Exercise echocardiogram	101	40.6	42 (25 to 61)	60 (48 to 72)	70 (57 to 81)	32 (18 to 48)
Dobutamine echocardiogram	21	33.3	33 (4 to 78)	67 (38 to 88)	71 (42 to 92)	29 (4 to 71)
Exercise SPECT	134	38.8	51 (34 to 68)	66 (56 to 75)	78 (68 to 86)	37 (24 to 51)
Vasodilator SPECT	66	48.5	41 (18 to 67)	49 (34 to 64)	71 (53 to 85)	22 (9 to 40)
Vasodilator PET	33	36.4	50 (23 to 77)	74 (49 to 91)	67 (43 to 85)	58 (28 to 85)
All imaging	372	41.4	46 (37 to 56)	61 (54 to 67)	73 (67 to 79)	32 (25 to 40)
Exercise ECG	237	15.2	16 (8 to 27)	75 (68 to 81)	71 (64 to 77)	31 (16 to 48)
All imaging+ECG	372	6.2	6 (3 to 13)	89 (85 to 93)	71 (66 to 76)	30 (13 to 53)

Predicting Endothelium-Dependent CMD


Test	n	% (+)	Sensitivity, % (95% Cl)	Specificity, % (95% CI)	NPV, % (95% CI)	PPV, % (95% CI)
Exercise echocardiogram	100	40.0	42 (28 to 57)	62 (47 to 75)	52 (38 to 65)	53 (36 to 68)
Dobutamine echocardiogram	21	38.1	18 (2 to 52)	40 (12 to 74)	31 (9 to 61)	25 (3 to 65)
Exercise SPECT	131	38.2	37 (26 to 50)	61 (48 to 73)	48 (37 to 60)	50 (36 to 64)
Vasodilator SPECT	63	50.8	61 (42 to 78)	59 (41 to 76)	61 (42 to 78)	59 (41 to 76)
Vasodilator PET	33	36.4	20 (4 to 48)	50 (26 to 74)	43 (22 to 66)	25 (5 to 57)
All imaging	365	41.6	41 (34 to 49)	58 (50 to 65)	49 (42 to 56)	50 (42 to 58)
Exercise ECG	233	15.5	18 (12 to 27)	78 (69 to 85)	51 (43 to 59)	61 (43 to 77)
All imaging+ECG	365	6.3	8 (4 to 12)	90 (85 to 94)	50 (45 to 56)	61 (39 to 80)

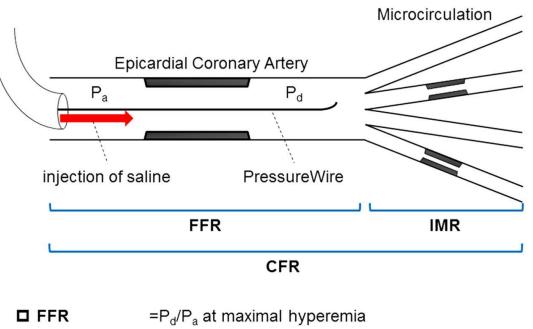
Diagnostic Techniques for Evaluation of CMD

	Accuracy	Reproducibility	Diagnostic Threshold	Prognostic Validation	Availability	Cost
Noninvasive*						
PET	++++	++++	CFR <2	++++	++	\$\$\$
CMR	+++	+++	MPRI <2	++	++	\$\$\$
Doppler echocardiography	++	+++	CFVR <2	+++	++++	\$
Invasive*						
CFR	++++	++++	<2.3	+++	++++	\$\$\$\$
IMR	++++	+++	>25 U	++	++	\$\$\$\$


*Endothelial Dependent CMD and Coronary Vasospasm can only be tested with invasive coronary functional angiography

Role Of PET and CCTA in CMD Evaluation & Risk Stratification

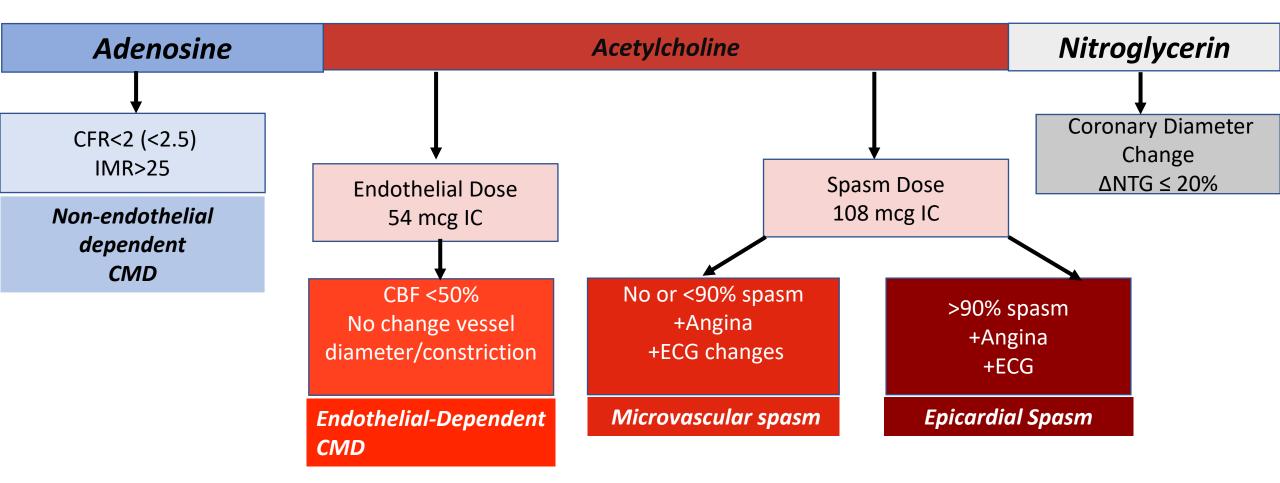
- PET and CCTA have complementary roles for anatomical and functional imaging
- Most patients undergoing evaluation for CMD have some degree of atherosclerosis
- Atherosclerotic burden and CMD are independent prognostic markers of clinical risk


Stress Cardiac MRI

- Myocardial perfusion Reserve Index
 - MPRI = (RU at stress) / (RU at rest)
 - Relative upslope (RU) = (Maximum upslope of the myocardial signal intensity curve)/ (maximum upslope of the LV cavity curve)
- MPRI < 1.84 predicts <a>1 abnormal pathway on CFA
 - Sensitivity 73%
 - Specificity 74%

Invasive Coronary Functional Angiography (CFA)

- Coronary microvasculature is indirectly tested via measurement of coronary flow and resistance down epicardial arteries
- Invasive, guidewire-based measurement of coronary flow reserve and resistance via Doppler flow (Volcano) & Thermodilution method (Coroflow)
- IC Adenosine is used to reach hyperemic state

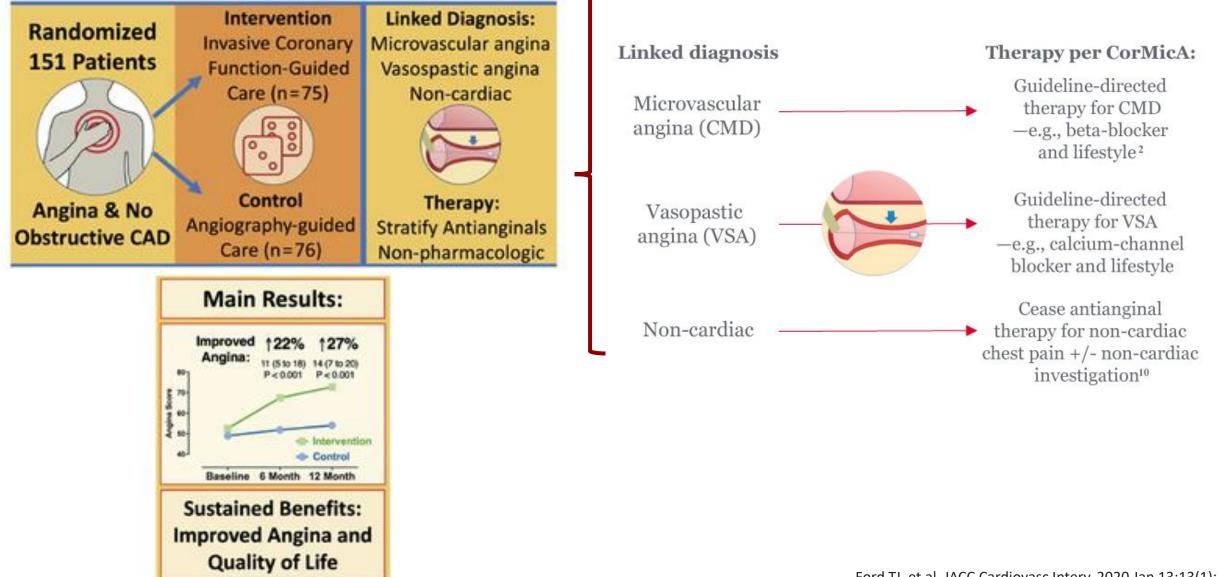


CFR	=hyperemic coronary flow \div resting coronary flow =1/hyperemic T _{mn} \div 1/resting T _{mn} =resting T /hyperemic T
	=resting T _{mn} /hyperemic T _{mn} =P _d at maximal hyperemia ÷ 1/hyperemic T _{mn}

= P_d at maximal hyperemia × hyperemic T_{mn}

(T_{mn}: an inverse correlate to absolute coronary flow)

Invasive Assessment: Coronary Functional Angiography

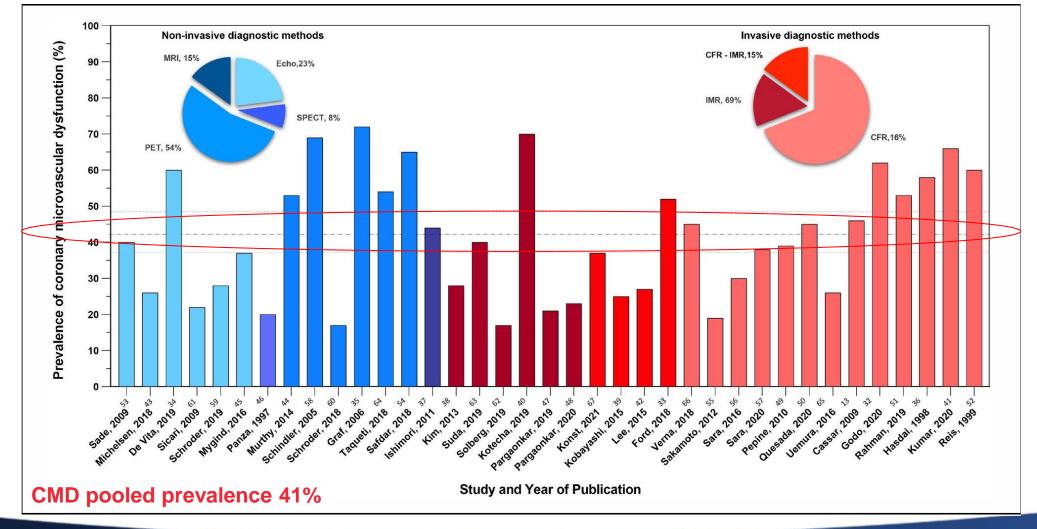

Invasive Testing: Doppler vs TD

- CFR overestimated by bolus TD: different normal
- Doppler: Classically in the Proximal LAD with IC adenosine
- Bolus TD: Typically in the mid-distal LAD with IV adenosine
- Very poor correlation between IMR (TD) and HMR (doppler)
- Testing pre or post IC NTG??
- Continuous TD and other novel techniques on the way, Doppler will be back within the year
- Pts don't fit in neat little boxes...
- Complex pts requiring thoughtful study
- An inaccurate dx may be worse than NO diagnosis!!

Treatment Approach Based on Abnormal CMD Pathway

Microvascu	lar Angina	Vasospastic Angina
Non-endothelial Dependent Dysfunction	Endothelial Dependent Dysfunction 个 Vasoconstriction ACh: vasoconstriction, impaired vasodilation	Coronary Vasospasm Vascular smooth muscle hyperactivity Ach: vasoconstriction
 ACEI/ARB ↑ CFR, ↓ workload, ?improve microvasculature remodeling Statins ↑ CFR BB ↓ myocardial oxygen consumption Ranolazine Improve MPRI in MVA Avoid Nitrates	 ACEI/ARB Improve endothelial vasomotor dysfunction Statins Improve endothelial function; pleotrophic effects (reduced vascular inflammation) CCB Vascular smooth muscle relaxation; ↓ myocardial oxygen consumption 	 CCB ↓ spontaneous and inducible coronary vasospasm via vascular smooth muscle relaxation & ↓ oxygen demand Nitrates ↓ spontaneous and inducible coronary vasospasm via epicardial vasodilation, ↓ oxygen demand Avoid BB
	Exercise training-Cardiac Rehabilitation	

Invasive Coronary Function Testing Angina (CorMICA): 1-Year RCT Outcomes



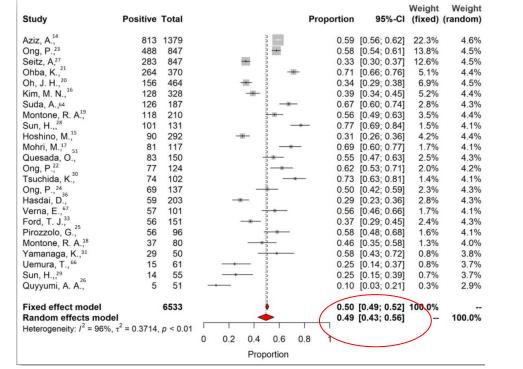
Ford TJ, et al. JACC Cardiovasc Interv. 2020 Jan 13;13(1):33-45.

Prevalence of CMD among patients with non obstructive CAD

14 Non-invasive

23 Invasive

Mileva N, et al. J Am Heart Assoc. 2022 Apr 5;11(7):e023207.


Prevalence of CMD vs. Coronary Epicardial and Microvascular spasm

CMD pooled prevalence 41%

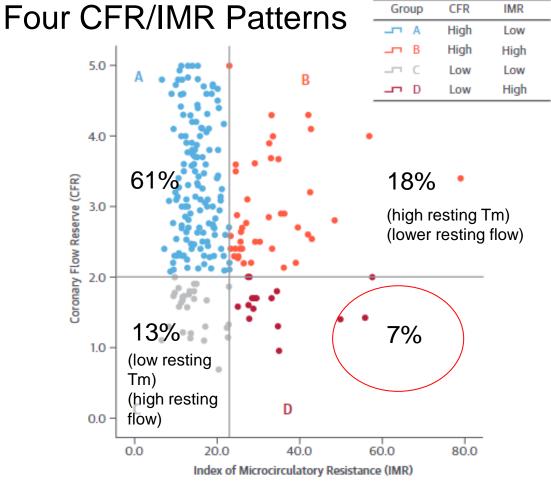
Study	N.Pos	N.Tot	Proportion	95%-CI	Weight (common)	
Cassar, A., 2009 13	170	376	i	[0.40: 0.50]	5.9%	2.9%
De Vita, A, 2019 34	18	30		[0.40, 0.30]		
Ford, T. J., 2018 33	78	151		[0.41, 0.77]		
Godo, 2020 32	91					
		148		[0.53; 0.69]		
Graf, S., 2006 35	42	58		[0.59; 0.83]		
lasdai, D., 1998 37	118	203		[0.51; 0.65]		
shimori, M.L., 2011	8	18		[0.22; 0.69]		
Kim, H-j, 2013 30 39	11	40		[0.15; 0.44]		
Kobayashi, Y., 2015	39	157		[0.18; 0.32]		
Konst R., 2021 ⁵⁷ 40	38	103		[0.28; 0.47]		
Kotecha, T., 2019	16	23	{ ────────────────────────────────────	[0.47; 0.87]	0.3%	
Kumar, S., 2020 41	107	163	0.66	[0.58; 0.73]	2.3%	2.8%
ee, B. K., 2015	38	137		[0.20; 0.36]	1.7%	2.8%
Michelsen, M. M., 2018	241	919	0.26	[0.23; 0.29]	11.2%	3.0%
Murthy, V. L., 2014 44	641	1218	0.53	[0.50; 0.55]	19.2%	3.0%
Mygind, ND, 2016 45	20	54		[0.24; 0.51]	0.8%	2.6%
Panza, JA, 1997 46	13	66	0.20	[0.11: 0.31]	0.7%	2.5%
Pargaonkar, V. S., 2019	34	155		[0.16; 0.29]		
Pargaonkar, V. S., 2020	19	88		[0.14: 0.32]		
Pepine, C. J., 2010 49	74	152		[0.41; 0.57]		
Quesada, O., 2020 50	67	150		[0.37: 0.53]		
Rahman, H., 2019 51	45	85		[0.42; 0.64]		
Reis, S., 1999 52	29	48		[0.45; 0.74]		
Sade, L. E., 2009 54	27	65		[0.29; 0.54]		
Safdar, B., 2018 54	81	124		[0.25, 0.34]		
Sakamoto, N., 2012 55	12	73		[0.09; 0.27]		
Sara, J. D., 2016 56	281	926		[0.03, 0.27]		
Sara, J. D., 2020 57	49	129				
				[0.30; 0.47]		
Schindler, 2005 58 60	50	72 97		[0.57; 0.80]		
Schroder, J., 2018 59	37			[0.28; 0.49]		
Schroder, J., 2019	49	174		[0.22; 0.35]		
Sicari, R., 2009 60 62	87	394		[0.18; 0.27]		
Solberg, OG, 2019	11	66		[0.09; 0.28]		
Suda, A., 2019 63 64	75	187		[0.33; 0.48]		
Faqueti, V. R., 2018	108	201		[0.47; 0.61]		
Jemura, T., 2016 65	16	61		[0.16; 0.39]		
/erna, E., 2018 66	45	101		[0.35; 0.55]	1.6%	2.8%
Common effect model		7212	0.41	[0.40; 0.42]	100.0%	-
Random effects model			• 0.41	[0.36; 0.47]	/-	100.0%
Heterogeneity: $I^2 = 94\%$, τ^2	0 10	17 0				

Pooled Prevalence spasm 49%

Epicardial or Microvascular Spasm

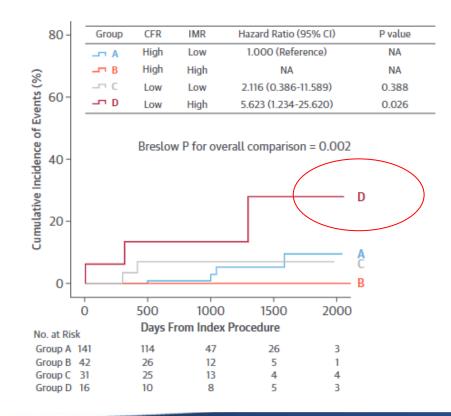
Epicardial Spasm 40%

Microvascular Spasm 24%


Female higher risk of CMD vs male (RR, 1.45 [95% Cl, 1.11-1.90])

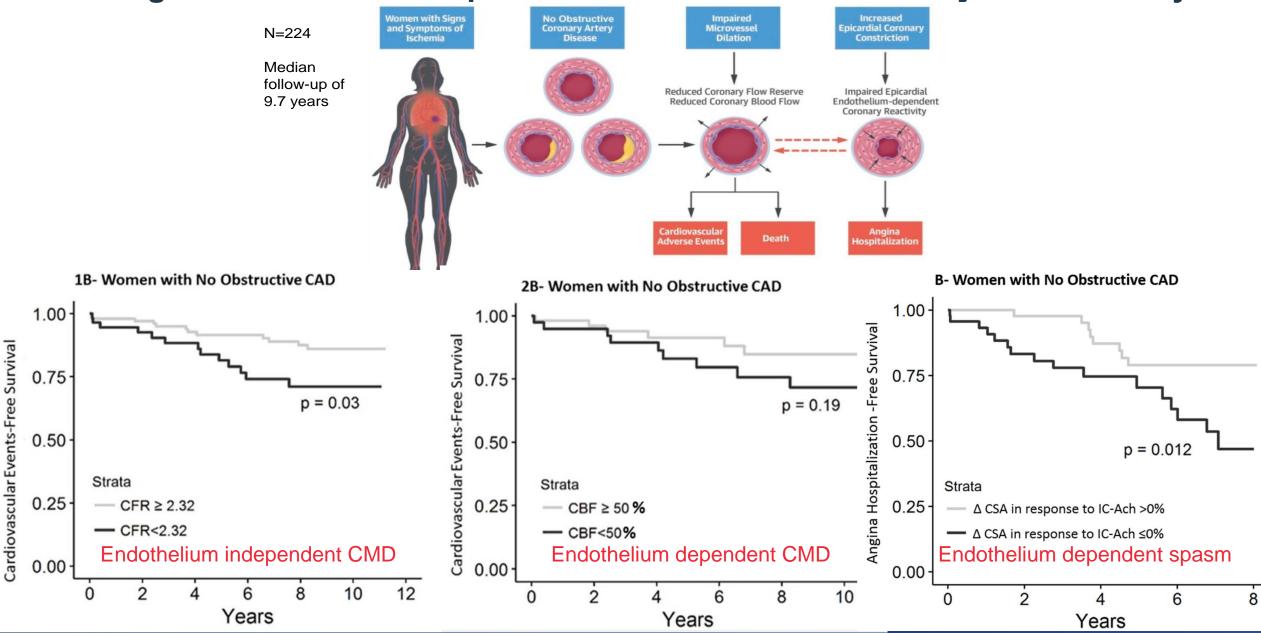
CRF'

3 studies / 541 patients evaluated for CMD and Spasm Coexistent CMD and coronary spasm 23%


Mileva N, et al. J Am Heart Assoc. 2022 Apr 5;11(7):e023207.

CFR/IMR patterns and outcomes in non obstructive CAD

Clinical Outcomes by CFR/IMR Pattern


Events: all-cause mortality, any MI, any revascularization

Lee et al. J Am Coll Cardiol. 2016;67:1158–69

Prognosis of CMD and Spasm from Women's Ischemia Syndrome Study

AlBadri A et al. JACC. 2019;73(6):684-93

Prognosis of CMD measured by low CFR

Isolated CMD overall mortality with low CFR Normal coronary flow reserve (CFR) is strongly associated with a reduced risk of death and major cardiovascular events (MACE) **Hazard Ratio Hazard Ratio** Study or Subaroup log[Hazard Ratio] SE Weight IV. Random, 95% CI IV. Random, 95% CI Cortigiani 2012 0.202 84.9% 5.20 [3.50, 7.73] 1.6487 HR 3.78 Mortality (16 studies, 7.01 [2.74, 17.93] Marks 2004 1.9473 0.4793 15.1% 8446 subjects) 5.44 [3.78, 7.83] Total (95% CI) 100.0% Heterogeneity: Tau² = 0.00; Chi² = 0.33, df = 1 (P = 0.57); l² = 0% 0.01 100 01 Test for overall effect: Z = 9.10 (P < 0.00001) Favours abnormal CFR Favours normal CFR HR 3.45 MACE (60 studies, Isolated CMD overall MACE with low CFR 35498 subjects) Study or Subgroup IV, Random, 95% CI IV. Random, 95% CI log[Hazard Ratio] SE Weight Koh 2015 -0.3147 0.1731 0.73 [0.52, 1.02] 8.4% Λ 3 Gebhard 2018 (Females) -0.2231 0.7073 5.3% 0.80 [0.20, 3.20] Pepine 2010 0.1823 0.0681 8.7% 1.20 [1.05, 1.37] Hazard ratio Lee 2020 (High FFR group) 0.613 0.2721 7.9% 1.85 [1.08, 3.15] Ziadi 2011 0.8755 0.275 7.9% 2.40 [1.40, 4.11] Gan 2017 1.3137 0.4369 7.0% 3.72 [1.58, 8.76] **Favours** abnormal **Favours normal CFR** Lowenstein 2014 1.4351 0.2855 7.9% 4.20 [2.40, 7.35] CFR 4.91 [2.93, 8.23] Cortigiani 2018 1.5913 0.2634 8.0% Cortigiani 2012 0.202 8.3% 5.20 [3.50, 7.73] 1.6487 A systematic review and meta-analysis of 79 studies and 59740 individuals Gebhard 2018 (Males) 1.8245 0.8379 4.5% 6.20 [1.20, 32.03] Cortigiani 2010 (2) (Males) 1.8294 0.306 7.8% 6.23 [3.42, 11.35] across multiple modalities of CFR measurement. Cortigiani 2014 2.4159 0.6603 5.6% 11.20 [3.07, 40.86] Dikic 2015 2.5586 0.6157 5.8% 12.92 [3.86, 43.18] Cortigiani 2010 (2) (Females) 16.48 [7.17, 37.88] Each 0.1- unit CFR was associated with a proportional 2.8021 0.4246 7.0%

Total (95% CI)

Heterogeneity: Tau² = 0.77; Chi² = 180.90, df = 13 (P < 0.00001); l² = 93

Test for overall effect: Z = 4.91 (P < 0.00001)

3.56 [2.14, 5.90]

0.1

Favours abnormal CFR Favours normal CFR

100

100.0%

Mortality (per 0.1 CFR unit HR: 1.16, 95% CI: 1.04–1.29) MACE (per 0.1 CFR unit HR: 1.08, 95% CI: 1.04–1.11)

CRF'

Kelshiker M et al. European Heart Journal (2022)43, 1582–1593

Prognosis of CMD vs No CMD based on low CFR

Odds Ratio for Mortality: 3.93

Study name		Statisti	cs for e	ach stud	y	Dead	Total	Odds ratio and 95%				
	Odds ratio	Lower limit		Z-Value	p-Value	CFR Abnormal	CFR Normal					
Marks ²²	3.12	1.20	8.15	2.33	0.02	12/60	8/108	1	1	1-		
Herzog 23	1.73	0.36	8.24	0.69	0.49	3/32	4/71					
Cortigiani 24	4.41	3.27	5.96	9.67	0.00	108 / 903	79/2645					
Lowenstein 25	6.52	2.28	18.66	3.49	0.00	9/128	6/523			- I ·	-	
Murthy 16	2.28	1.18	4.39	2.47	0.01	32/641	13/577			−	-	
Gan 26	8.75	2.22	34.54	3.10	0.00	5/33	4/200			- I -	-	
Lee 27	3.69	1.36	10.03	2.56	0.01	8/139	8/492				-	
Monroy-Gonzalez 28	20.75	1.13	382.62	2.04	0.04	6/34	0/45					
Total	3.93	2.91	5.30	8.94	0.00	183 / 1970	122 / 4661				•	

No CMD CMD

Study name		Statistic	s for ea	ch study		<u>-</u>	lazard r	atio an	d 95% C	1
	Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value					
Marks ²²	7.010	2.743	17.917	4.067	0.000	1				- 1
Herzog 23	2.860	1.241	6.593	2.466	0.014			_ ⊣		
Cortigiani ²⁴	3.310	2.291	4.782	6.376	0.000					
Total	3.619	2.446	5.354	6.437	0.000				▲	_ I

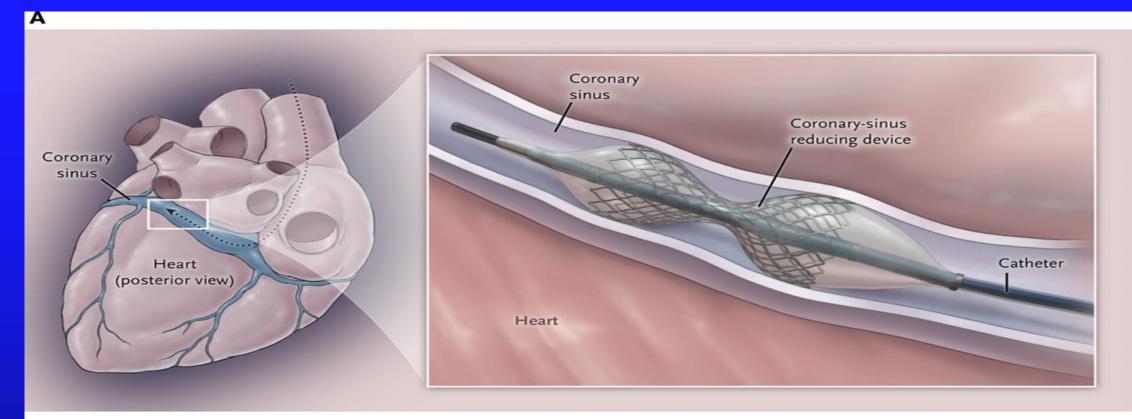
No CMD CMD

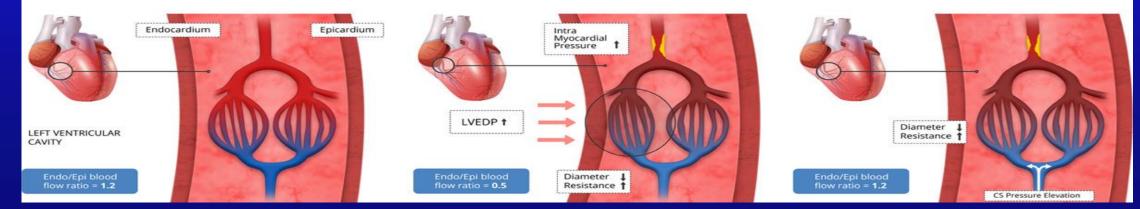
Crude mortality in 4661 non- CMD 2.6%(122) vs CMD 9.3% (183) in 1970 patients

							6				$\overline{}$	
0	dr	s	R۶	atio	f	or M	1AC	F٠	51	6		
Ŭ	uu	0				<i>J</i> I IV	" "	- .	0.1	U		
Α								\geq		\sim		
Study name	name Statistics for each study					MACE	/ Total		95% CI			
	Odds ratio	Lower limit		Z-Value p	-Value	Abnormal CFR	Normal CFR					
Herzog ²³	1.71	0.58	4.99	0.98	0.33	7/32	10/71	1	1	-+=	- 1	
Cortigiani 29	10.27	7.30	14.46	13.35	0.00	108/318	64 / 1342					
Ziadi 30	2.49	1.02	6.09	2.00	0.05	9/100	12/314				H T	
Lowenstein 25	4.36	2.38	7.98	4.78	0.00	23 / 128	25 / 523					
Murthy 16	2.61	1.55	4.42	3.59	0.00	55/641	20/577			_ I -		
Dikic 31	56.67	17.48	183.69	6.73	0.00	16/22	8/178			1 -	- -	-
Gan ²⁶	3.95	1.52	10.25	2.82	0.00	8/33	15/200					
Lee 27	3.80	1.72	8.41	3.30	0.00	13 / 139	13/492			<u> </u>	-	
Monroy-Gonzalez 28	20.75	1.13	382.62	2.04	0.04	6/34	0/45					
Total	5.16	2.81	9.47	5.29	0.00	245 / 1447	167 / 3742		1		•	
								0.01	0.1	1	10	

No CMD CMD

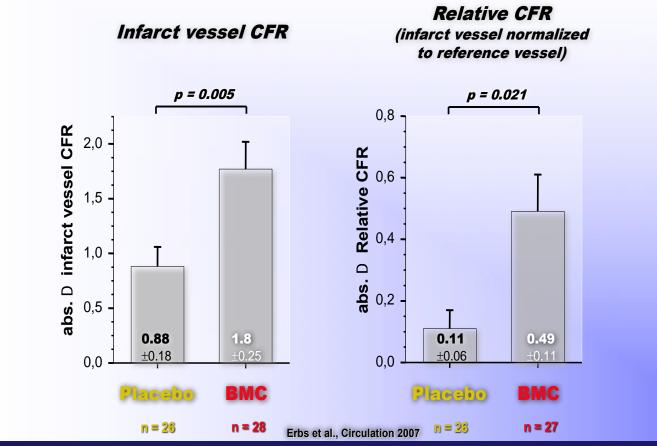
Study name			Statistic	s for ea	ch study			Hazard ratio and 95% Cl					
		Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value							
Herzog 23		1.60	1.00	2.56	1.95	0.05	1	1	HE -	1	- 1		
Cortigiani Men 29		6.23	3.42	11.34	5.99	0.00			I	▰┤			
Cortigiani Wome		16.48	7.17	37.86	6.60	0.00				_	-		
Ziadi 30		2.40	1.37	4.21	3.06	0.00				· 1			
Lowenstein 25	(CFR 1.75-1.99) 2.80	1.19	6.57	2.37	0.02				-1			
Lowenstein 25	(CFR 1.5-1.74)	4.70	1.99	11.12	3.52	0.00			1 -	∎→			
Lowenstein 25	(CFR <1.49)	5.40	2.50	11.68	4.28	0.00			1 4				
Dikic 31		12.90	3.86	43.10	4.15	0.00					- 1		
Gan 26		3.02	1.51	6.04	3.13	0.00			l –∎	- [
Lee 27		4.99	2.10	11.88	3.63	0.00			1 -	∎∔			
Total		4.42	2.79	7.01	6.33	0.00			_				
							0.01	0.1	1	10	100		
								No CMD		CMD			


Crude MACE in 3742 non- CMD 4.5%(167) vs CMD 16.9 % (245) in 1447 patients

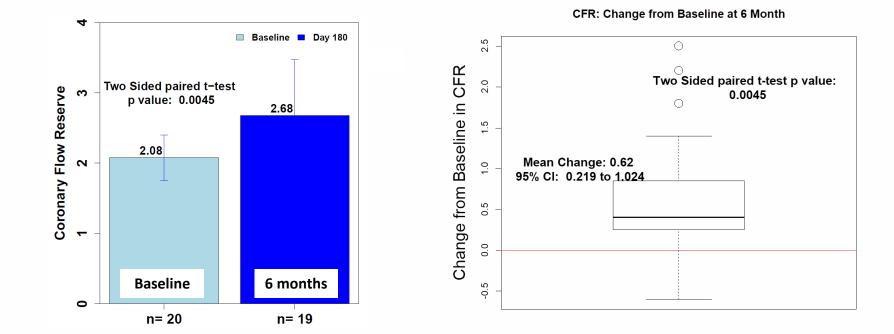

Gdowski MA et al. J Am Heart Assoc. 2020;9:e014954.

Novel Therapies for Microvascular Dysfunction

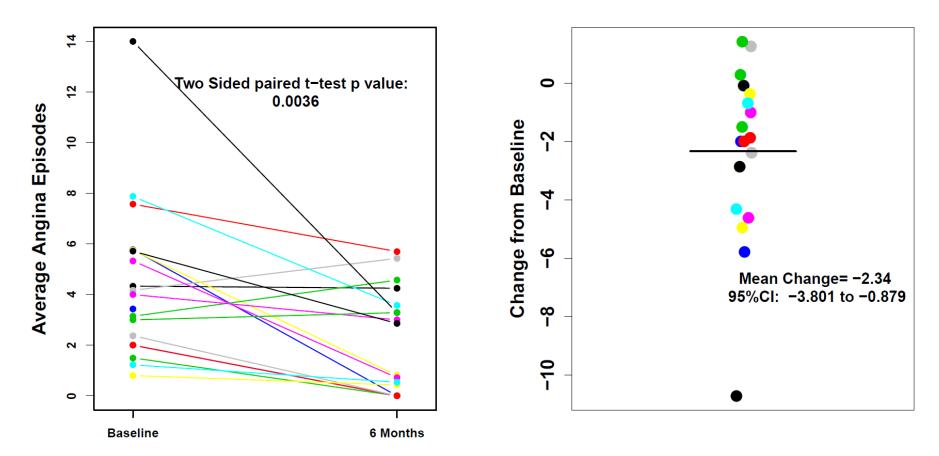
- Coronary Sinus Reducer
- Stem Cell Therapy
- Novel therapeutics

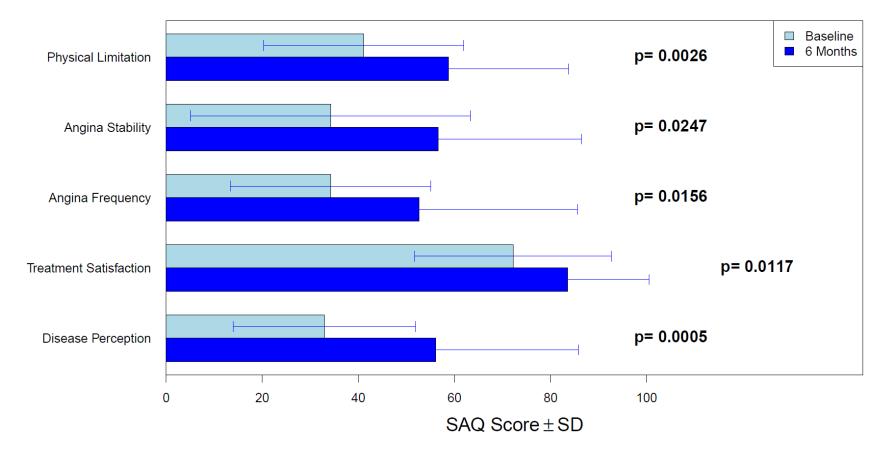

в

Povsic TJ, Henry TD, Ohman EM. Therapeutic Approaches for the No-Option Refractory Angina Patient. Circ Cardiovasc Interv. 2021 Feb;14(2):e009002.



Intracoronary BMC Administration Normalizes Coronary Flow Reserve

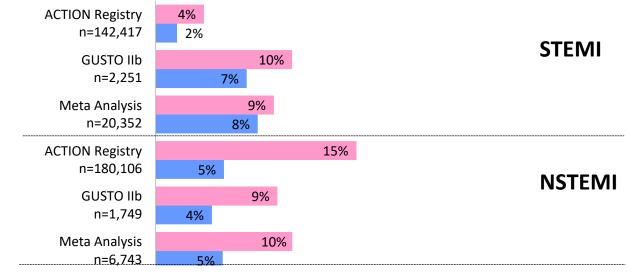

ESCAPE-CMD INCREASES CFR AT 6 MONTHS IN CMD



ESCAPE-CMD DECREASES ANGINA FREQUENCY AT 6 MONTHS

ESCAPE-CMD IMPROVES SEATTLE ANGINA QUESTIONNAIRE SCORES AT 6 MONTHS

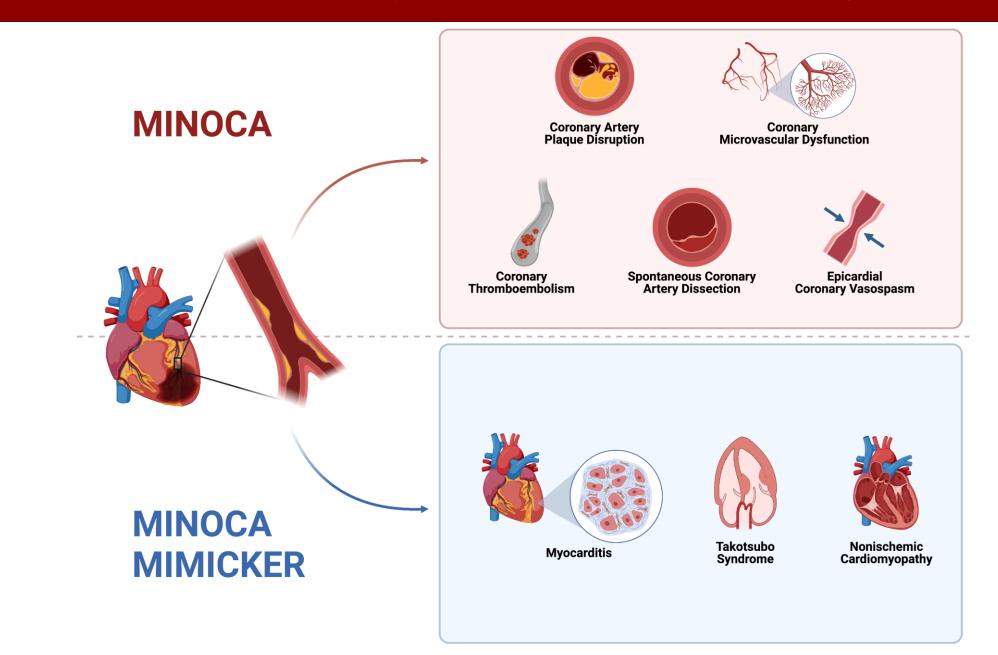
AHA Diagnostic Criteria for MINOCA


1. Acute myocardial infarction

- Modified from the "Fourth Universal Definition of Myocardial Infarction" Criteria)
- Detection of a rise or fall of cTn
- Clinical evidence of infarction evidenced by at least 1 of the following:
 - Symptoms of myocardial ischemia
 - New ischemic ECG changes
 - Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality in a pattern consistent with an ischemic cause
 - Identification of a coronary thrombus by angiography or autopsy

2. No Obstructive CAD

- Defined as the absence of obstructive disease on angiography (ie, no coronary artery stenosis ≥50%) in any major epicardial vessel
- 3. No specific alternate diagnosis for the clinical presentation
- Alternate diagnoses include but are not limited to nonischemic causes such as sepsis, pulmonary embolism, and myocarditis

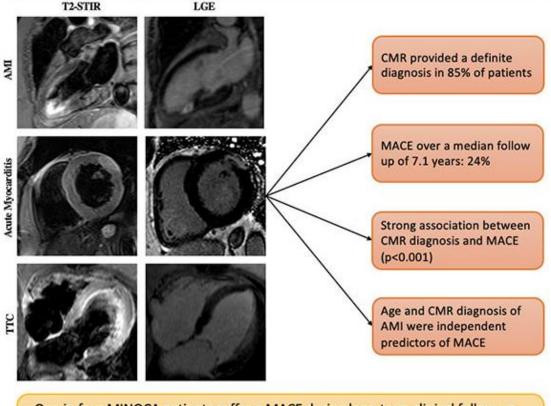

Prevalence of MINOCA

% with non-obstructive CAD

1/3 ACS in women angiogram shows no obstructive CAD

MINOCA is a Syndrome NOT a Diagnosis

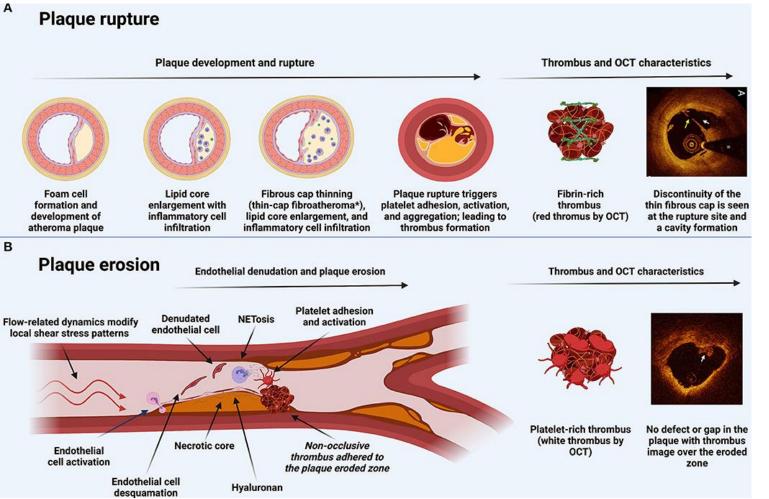
ESC Guidelines - MINOCA


Recommendations for myocardial infarction with non-obstructive coronary arteries

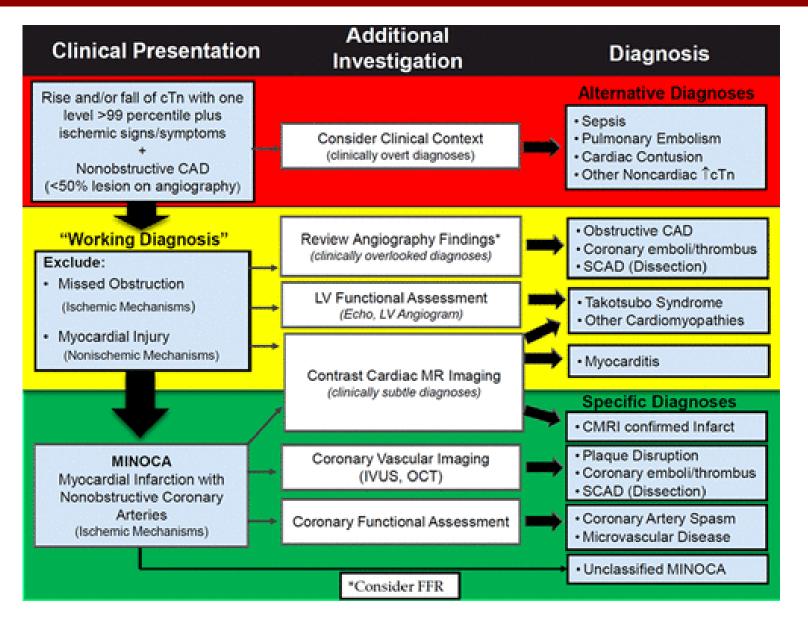
Recommendations	Class ^a	Level ^b	
In all patients with an initial working diagnosis of MINOCA, it is recommended to follow a diagnostic algorithm to differentiate true MINOCA from alternative diagnoses.	1	с	
It is recommended to perform CMR in all MINOCA patients without an obvious underlying cause. ³⁷⁰	1.1	В	
It is recommended to manage patients with an initial diagnosis of MINOCA and a final established underlying cause according to the disease-specific guidelines.	1	с	ESC 2020
Patients with a final diagnosis of MINOCA of unknown cause may be treated according to secondary prevention guidelines for athe- rosclerotic disease.	ПЬ	с	0

CMR = cardiac magnetic resonance; MINOCA = myocardial infarction with non-obstructive coronary arteries. ^aClass of recommendation. ^bLevel of evidence.

CMRI for Prognostication in MINOCA

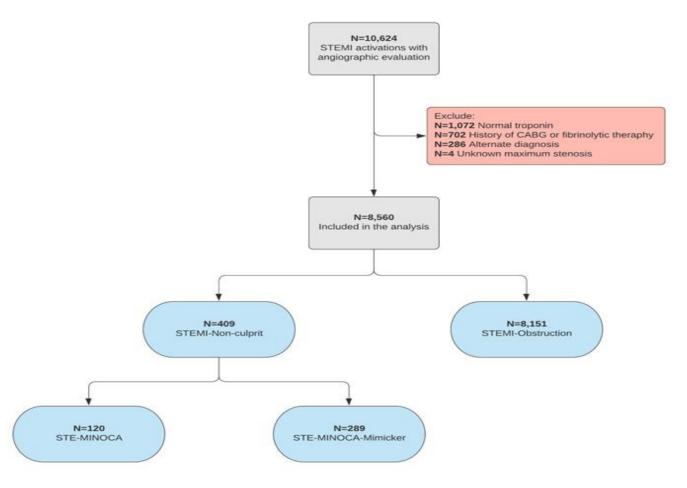

Prospective observational study (n=229) Inclusion criteria: Acute chest pain, hs-cTnT > 29ng/L, non-obstructed coronary arteries Primary endpoint: MACE (Composite of all-cause mortality and cardiovascular readmissions)

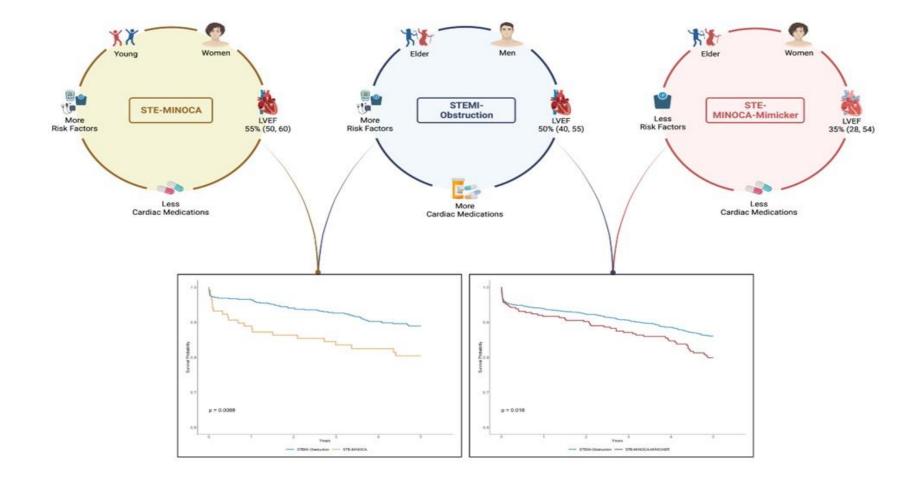
One in four MINOCA patients suffer a MACE during long-term clinical follow up
 CMR diagnosis of AMI is a significant predictor of MACE even in the absence of significant coronary artery obstruction


- CMRI also carries not only diagnostic but also prognostic value.
- CMRI confirmed MI was an independent predictor of long-term cardiovascular events.

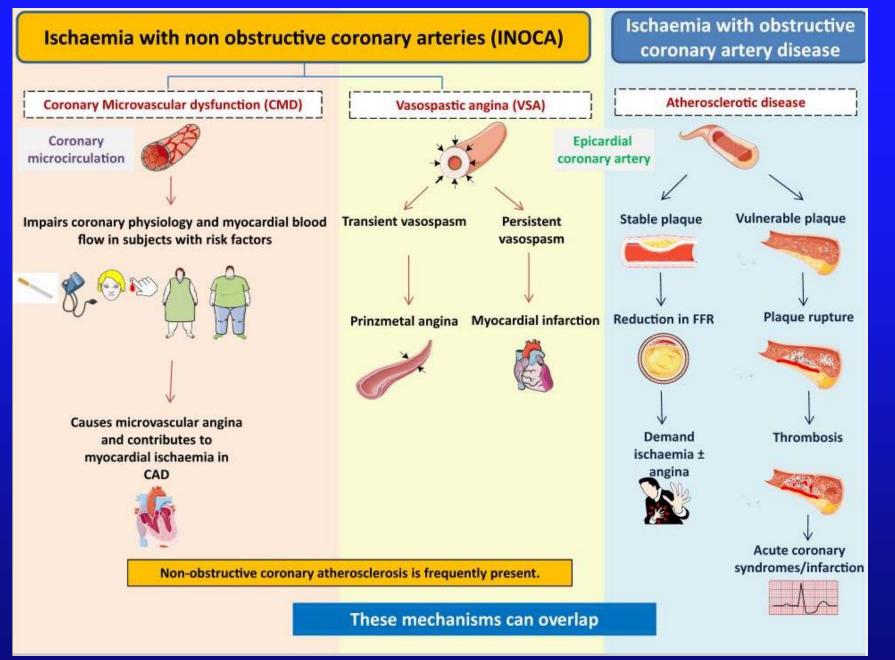
MINOCA: Coronary Artery Plaque Disruption

- The HARP study plaque disruption was the most common cause of NSTEMI MINOCA
- 43.4% of females with MINOCA who underwent OCT had plaque disruption:
 - 8 plaque rupture
 - 5 plaque erosion
 - 38 intra-plaque cavity
 - 19 layered plaque


MINOCA Algorithm


*The diagnostic performance of **cMRI** decreases significantly from **77%** at **3 days** to **47%** at **12 days** after hospital admission.

Tamis-Holland JE, et al. Circulation. 2019 Apr 30;139(18):e891-e908. Sörensson P, et. *JACC: Cardiovascular Imaging*. 2021;14(9):1774-1783.

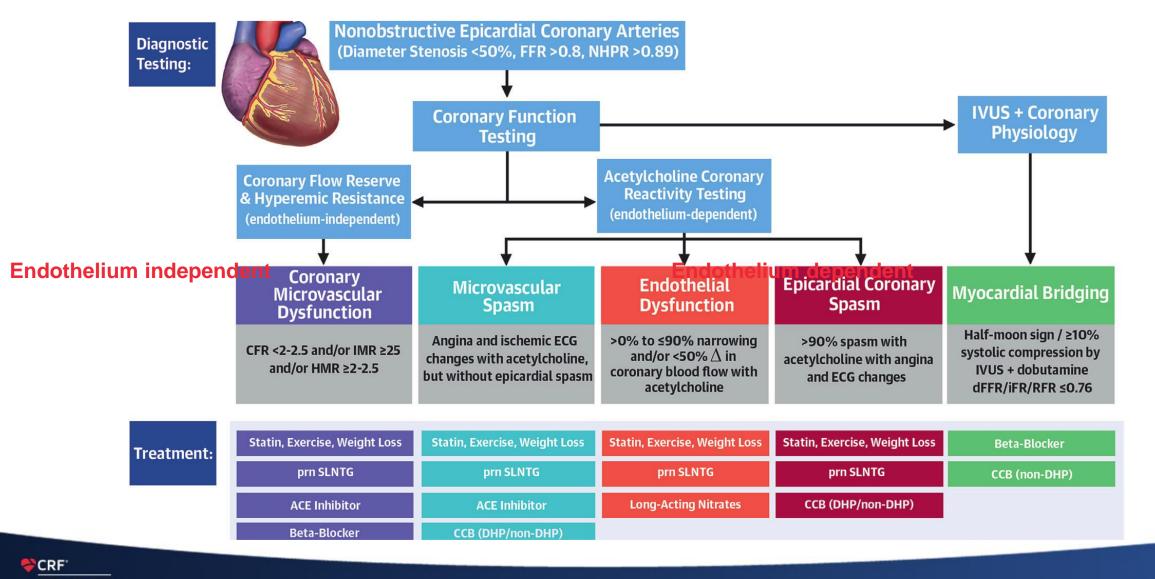

MSC MINOCA STEMI

MINOCA STEMI

Quesada O, et al. Characteristics and Long-term Mortality in Patients with ST-Segment Elevation Myocardial Infarction with Non-Obstructive Coronary Arteries (STE-MINOCA): A High Risk Cohort. medRxiv [Preprint]. 2023 Feb 7:2023.02.05.23285502.

Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas AHEM, Prescott E, Karam N, Appelman Y, Fraccaro C, Louise Buchanan G, Manzo-Silberman S, Al-Lamee R, Regar E, Lansky A, Abbott JD, Badimon L, Duncker DJ, Mehran R, Capodanno D, Baumbach A. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J. 2020 Oct 1:41(37):3504-3520.

Thank you!

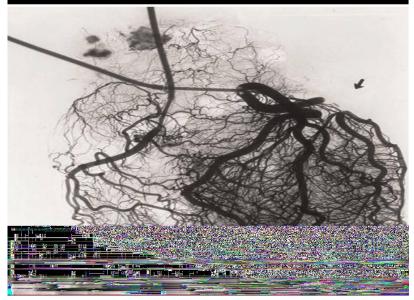

Women's Heart Center

www.TheChristHospital.com/Womens-Heart

Lindner Center phone number: 513-585-1737

Coronary Function Testing (CFT)

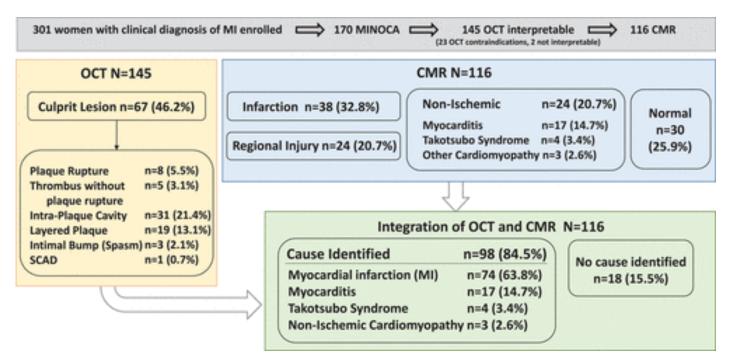
Smilowitz NR, et al. J Am Coll Cardiol. 2023;82(12):1264–1279.


What you see

The tip of the iceberg Resolution >500 µm

What you don't see ...

The hidden side of the iceberg Resolution <500 µm



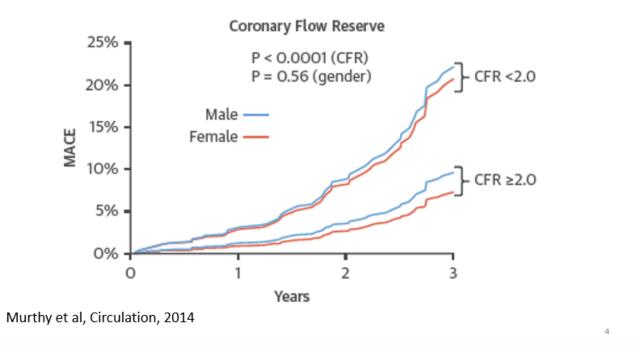
Microvascular Disease?

I <mark>ĐẠI HỘI TIM MẠCH TOÀN QUỐC LẦN THỨ 18 |</mark> THE 18th NATIONAL CONGRESS OF CARDIOLOGY-

Multi-modality Imaging to Identify Underlying Diagnosis in MINOCA: HARP Study

*MINOCA in HARP was predominantly NSTEMIs

- OCT culprit → CMR evidence of infarction or regional ischemic injury in 69%
- Ischemic CMR findings (LGE or regional injury) → 44% <u>no</u> OCT culprit
- Multi-modality imaging (OCT+CMR)
 → 85% with cause identified
 - OCT alone: 46% (p<0.001)
 - CMR alone: 74% (p=0.001)



Future of Interventional Cardiology: Does it reach a plateau or limit?

ĐẠI HỘI TIM MẠCH TOÀN QUỐC LẦN THỨ 18 | THE 18th NATIONAL CONGRESS OF CARDIOLOGY

BACKGROUD: REDUCED CORONARY FLOW RESERVE IS ASSOCIATED WITH SIGNIFICANTLY INCREASE RISK OF MACE

GUIDELINES ARE MOVING: WHO AND WHAT IS NEXT?

Timothy D. Henry, MD

Medical Director, The Carl and Edyth Lindner Center for Research and Education The Carl and Edyth Lindner Center Distinguished Chair in Clinical Research Director of Programmatic and Network Development Heart and Vascular Service Line

Diagnosis of Coronary Microvascular Disease: Invasive Imaging Indications for Invasive Coronary Function Testing (CFT)

Evidence of ischemia + No obstructive CAD + Persistent chest pain

Chest pain refractory to medical management

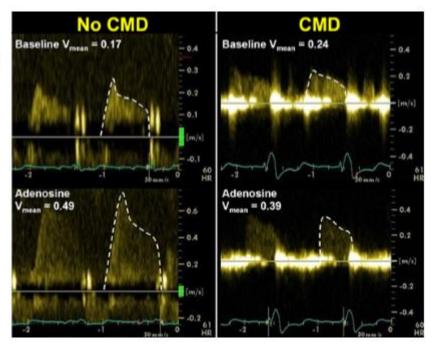
Preference for definitive diagnosis

Safety data:

<0.6-0.7% serious adverse event (coronary dissection, MI)

ScientificSessions.org

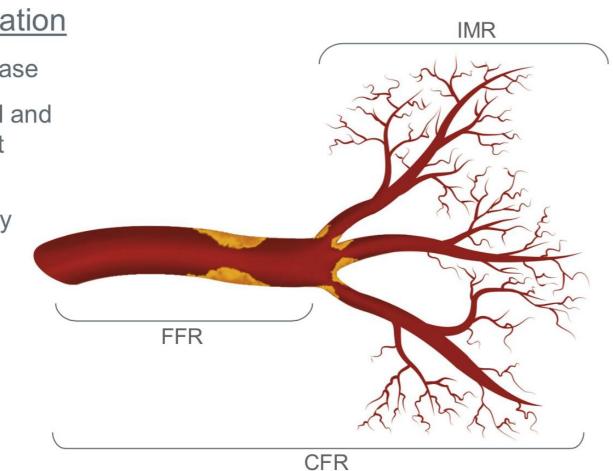
Wei J et al. *JACC Interventions*. 2012;5:646-53; Reriani M et al. *Coronary Artery Disease*. 2015;27:213-20; Ong P et al. *Circulation*. 2014;129:1723-30



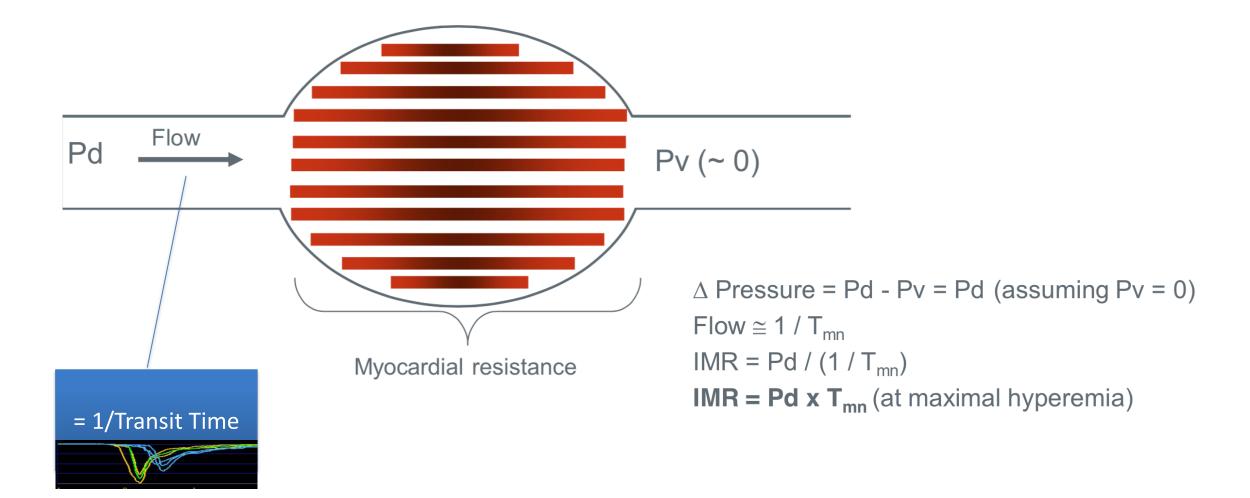
Methods

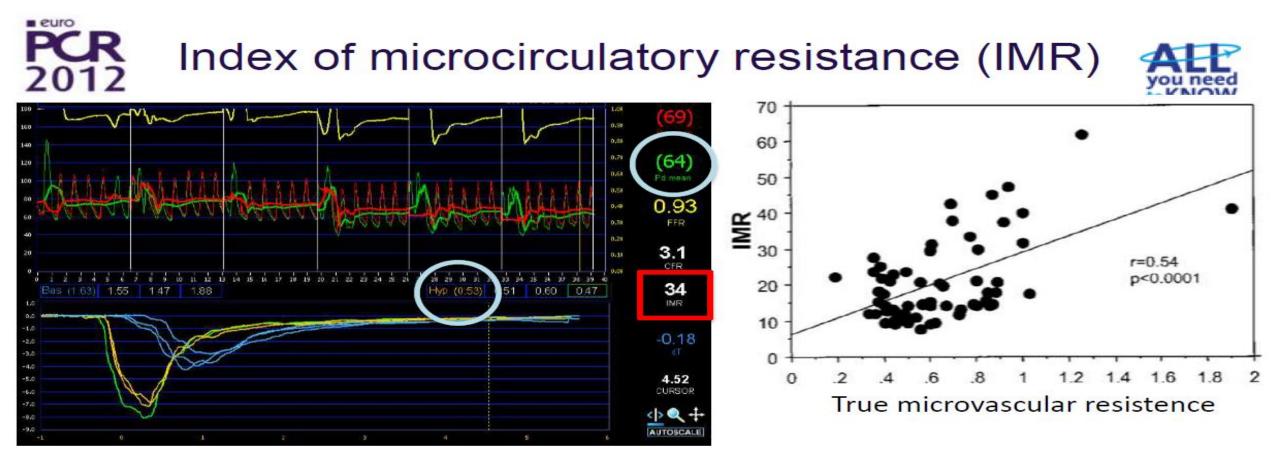
- Coronary flow reserve (CFR) by transthoracic Doppler echo coronary flow velocity at rest and with adenosine
 - Read by core lab

ESC Congress Munich 2018


- CMD defined as CFR<2.5
- Systemic microvascular function by peripheral arterial tonometry (EndoPAT) reactive hyperemia index (RHI)
- Myocardial function by echo tissue Doppler and speckle-tracking

Index of Myocardial Resistance: IMR


Invasive and quantitative method for evaluating the microcirculation

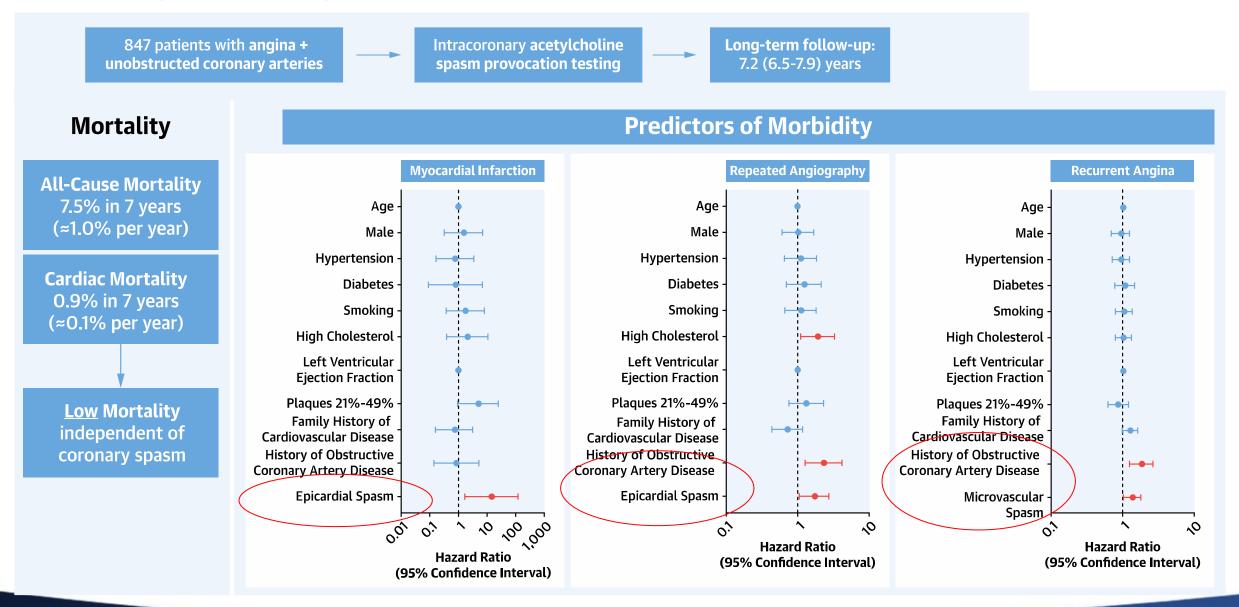

- FFR: Specific for epicardial disease
- CFR: Affected by both epicardial and microcirculatory disease (cannot distinguish between the two)
- IMR: Specific for microcirculatory disease

IMR

Myocardial resistance = pressure drop across the myocardium divided by flow

 $IMR = P_d \times T_{mn hyperemic}$

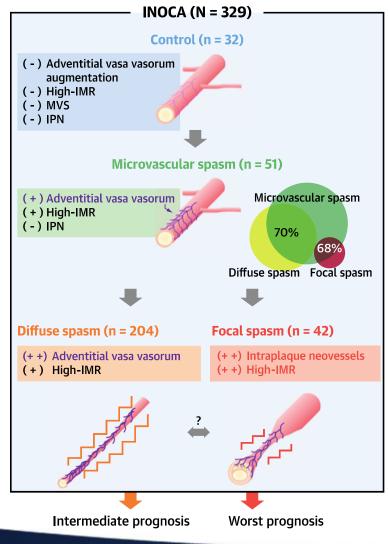
- IMR assesses the status of microcirculation independent of both, epicardial stenosis and changes in hemodynamics.
- Collateral flow contribution should be taken into account in case of severe stenoses.

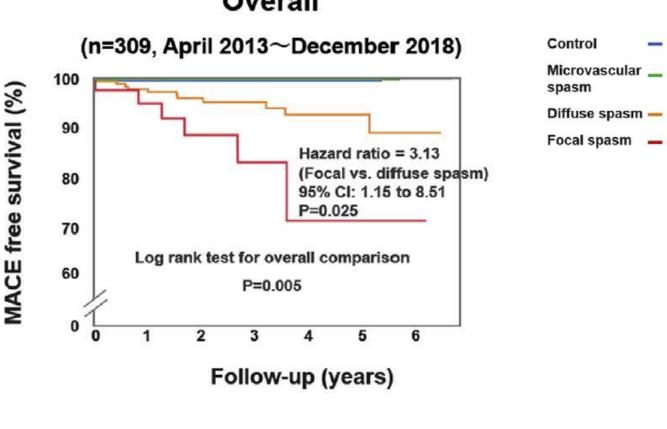


S.GRSS

"It sort of makes you stop and think, doesn't it."

Long term prognosis of epicardial and microvascular spasm




Seitz A et al. J Am Coll Cardiol Intv. 2020 Aug, 13 (16) 1865–1876

Coronary morphology by OCT and outcomes in focal vs diffuse spasm

Nishimiya K et al. JACC Interventions. 2021;14:606–18

CRF'

Overall

Conclusions

- In patients with no obstructive CAD, half present with vasomotor abnormality - CMD or spasm
- CMD is more prevalent in women, but men are affected in significant proportion
- Prevalence of CMD is similar between methods and techniques used
- CMD is associated with increased risk of MACE, mortality and hospitalization, whereas spasm has more hospitalization and repeat angiograms but lower MACE and death rates

What we could do for coronary microvascular disease?

Timothy D. Henry, MD

Medical Director, The Carl and Edyth Lindner Center for Research and Education The Carl and Edyth Lindner Family Distinguished Chair in Clinical Research Director of Programmatic and Network Development

ĐẠI HỘI TIM MẠCH TOÀN QUỐC LẦN THỨ 18 | THE 18th NATIONAL CONGRESS OF CARDIOLOGY-

International Study Of Comparative Health Effectiveness With Medical And Invasive Approaches (ISCHEMIA):

Primary Report of Clinical Outcomes

Funded by the National Heart, Lung and Blood Institute

Judith S. Hochman, MD

NYU School of Medicine On behalf of the ISCHEMIA Research Group

Scientific Sessions 2019

NYU Langone Health

